Source code for hydroflows.methods.coastal.coastal_design_events

"""Create hydrographs for coastal waterlevels."""

import logging
from datetime import datetime
from pathlib import Path
from typing import List, Optional

import numpy as np
import pandas as pd
import xarray as xr
from hydromt.stats import eva, get_peak_hydrographs, get_peaks
from hydromt.stats.extremes import plot_return_values
from matplotlib import pyplot as plt
from pydantic import model_validator

from hydroflows._typing import FileDirPath, ListOfInt, ListOfStr, OutputDirPath
from hydroflows.methods.coastal.coastal_utils import plot_hydrographs
from hydroflows.methods.events import Event, EventSet
from hydroflows.workflow.method import ExpandMethod
from hydroflows.workflow.method_parameters import Parameters

logger = logging.getLogger(__name__)


__all__ = ["CoastalDesignEvents", "Input", "Output", "Params"]


[docs] class Input(Parameters): """Input parameters for the :py:class:`CoastalDesignEvents` method.""" surge_timeseries: Path """Path to surge timeseries data.""" tide_timeseries: Path """Path to tides timeseries data.""" bnd_locations: Path """Path to file with locations corresponding to timeseries data."""
[docs] class Output(Parameters): """Output parameters for the :py:class:`CoastalDesginEvents` method.""" event_yaml: FileDirPath """Path to event description file, see also :py:class:`hydroflows.methods.events.Event`.""" event_csv: Path """Path to event timeseries csv file""" event_set_yaml: FileDirPath """The path to the event set yml file, see also :py:class:`hydroflows.methods.events.EventSet`. """
[docs] class Params(Parameters): """Params for the :py:class:`CoastalDesginEvents` method.""" event_root: OutputDirPath """Root folder to save the derived design events.""" rps: ListOfInt """Return periods of interest [year].""" event_names: Optional[ListOfStr] = None """List of event names for the design events.""" wildcard: str = "event" """The wildcard key for expansion over the design events.""" ndays: int = 6 """Duration of derived events in days.""" t0: datetime = datetime(2020, 1, 1) """Arbitrary time of event peak.""" locs_col_id: str = "stations" """Name of locations identifier. Defaults to \"stations\".""" plot_fig: bool = True """Make hydrograph plots""" @model_validator(mode="after") def _validate_event_names(self): """Use rps to define event names if not provided.""" if self.event_names is None: self.event_names = [f"h_event_rp{rp:03d}" for rp in self.rps] elif len(self.event_names) != len(self.rps): raise ValueError("event_names should have the same length as rps") # create a reference to the event wildcard if "event_names" not in self._refs: self._refs["event_names"] = f"$wildcards.{self.wildcard}" return self
[docs] class CoastalDesignEvents(ExpandMethod): """Create design events for coastal waterlevels. Parameters ---------- surge_timeseries : Path Path to surge timeseries data. tide_timeseries : Path Path to tides timeseries data. waterlevel_rps : Path Path to the total still waterlevel return values dataset. event_root : Path, optional Folder root of ouput event catalog file, by default "data/interim/coastal" rps : List[float], optional Return periods of design events, by default [1, 2, 5, 10, 20, 50, 100]. event_names : List[str], optional List of event names for the design events, by "p_event{i}", where i is the event number. wildcard : str, optional The wildcard key for expansion over the design events, by default "event". See Also -------- :py:class:`CoastalDesignEvents Input <hydroflows.methods.coastal.coastal_design_events.Input>` :py:class:`CoastalDesignEvents Output <hydroflows.methods.coastal.coastal_design_events.Output>` :py:class:`CoastalDesignEvents Params <hydroflows.methods.coastal.coastal_design_events.Params>` """ name: str = "coastal_design_events" _test_kwargs = { "surge_timeseries": "surge.nc", "tide_timeseries": "tide.nc", "bnd_locations": "bnd_locations.gpkg", } def __init__( self, surge_timeseries: Path, tide_timeseries: Path, bnd_locations: Path, event_root: Path = Path("data/events/coastal"), rps: Optional[List[float]] = None, event_names: Optional[List[str]] = None, wildcard: str = "event", **params, ) -> None: if rps is None: rps = [2, 5, 10, 20, 50, 100] self.params: Params = Params( event_root=event_root, rps=rps, event_names=event_names, wildcard=wildcard, **params, ) self.input: Input = Input( surge_timeseries=surge_timeseries, tide_timeseries=tide_timeseries, bnd_locations=bnd_locations, ) wc = "{" + self.params.wildcard + "}" self.output: Output = Output( event_yaml=self.params.event_root / f"{wc}.yml", event_csv=self.params.event_root / f"{wc}.csv", event_set_yaml=self.params.event_root / "coastal_design_events.yml", ) # set wildcards and its expand values self.set_expand_wildcard(self.params.wildcard, self.params.event_names) def _run(self): """Run CoastalDesignEvents method.""" da_surge = xr.open_dataarray(self.input.surge_timeseries) da_tide = xr.open_dataarray(self.input.tide_timeseries) locs_col_id = self.params.locs_col_id # check if all dims are the same if not (da_surge.dims == da_tide.dims): raise ValueError("Dimensions of input datasets do not match") if locs_col_id not in da_surge.dims or locs_col_id not in da_tide.dims: raise ValueError( f"Locations identifier {locs_col_id} not found in input data." ) # check the time resolution of the input data and make sure it is the same surge_freq = pd.infer_freq(da_surge.time.values) tide_freq = pd.infer_freq(da_tide.time.values) if surge_freq != tide_freq: raise ValueError("Time resolution of input datasets do not match") wdw_ndays = pd.Timedelta(f"{self.params.ndays}D") wdw_size = int(wdw_ndays / pd.Timedelta(tide_freq)) min_dist = int(pd.Timedelta("10D") / pd.Timedelta(tide_freq)) # get mhw tidal hydrographs da_mhws_peaks = get_peaks( da=da_tide, ev_type="BM", min_dist=min_dist, period="29.5D", ) tide_hydrographs_all = ( get_peak_hydrographs( da_tide, da_mhws_peaks, wdw_size=wdw_size, normalize=False, ) .transpose("time", "peak", ...) .load() ) tide_hydrographs_all["time"] = tide_hydrographs_all[ "time" ].values * pd.Timedelta(tide_freq) tide_hydrographs = tide_hydrographs_all.median("peak") # Singleton dimensions don't survive get_peak_hydrograph function, so reinsert stations dim if locs_col_id not in tide_hydrographs.dims: tide_hydrographs = tide_hydrographs.expand_dims(dim={locs_col_id: 1}) tide_hydrographs[locs_col_id] = da_tide[locs_col_id] # get normalized surge hydrographs surge_peaks = get_peaks( da=da_surge, ev_type="BM", min_dist=min_dist, period="year", ) surge_hydrographs_all = ( get_peak_hydrographs( da_surge, surge_peaks, wdw_size=wdw_size, normalize=True, ) .transpose("time", "peak", ...) .load() ) surge_hydrographs_all["time"] = surge_hydrographs_all[ "time" ].values * pd.Timedelta(tide_freq) surge_hydrographs = surge_hydrographs_all.median("peak") # Singleton dimensions don't survive get_peak_hydrograph function, so reinsert stations dim if locs_col_id not in surge_hydrographs.dims: surge_hydrographs_all = surge_hydrographs_all.expand_dims( dim={locs_col_id: 1} ) surge_hydrographs_all[locs_col_id] = da_surge[locs_col_id] surge_hydrographs = surge_hydrographs.expand_dims(dim={locs_col_id: 1}) surge_hydrographs[locs_col_id] = da_surge[locs_col_id] # calculate the total water level return values da_wl = da_surge + da_tide da_wl_eva = eva( da_wl, ev_type="BM", min_dist=min_dist, rps=np.array(self.params.rps) ).load() # if rp contains one value expand the return_values dim with the rp if len(self.params.rps) == 1: da_wl_eva = da_wl_eva.assign_coords(rps=self.params.rps) return_values_expanded = da_wl_eva.return_values.expand_dims( rps=da_wl_eva.rps.values ) da_wl_eva = da_wl_eva.assign(return_values=return_values_expanded) # construct design hydrographs based on the return values, normalized surge hydrographs and tidal hydrographs nontidal_rp = da_wl_eva["return_values"].reset_coords( drop=True ) - tide_hydrographs.max("time").reset_coords(drop=True) h_hydrograph = tide_hydrographs + surge_hydrographs * nontidal_rp h_hydrograph = h_hydrograph.assign_coords( time=tide_hydrographs["time"].values + pd.to_datetime(self.params.t0) ) root = self.output.event_set_yaml.parent events_list = [] for name, rp in zip(self.params.event_names, self.params.rps): output = self.get_output_for_wildcards({self.params.wildcard: name}) h_hydrograph.sel(rps=rp).transpose().to_pandas().round(2).to_csv( output["event_csv"] ) # save event description file event = Event( name=name, forcings=[ { "type": "water_level", "path": output["event_csv"], "locs_path": self.input.bnd_locations.resolve(), "locs_id_col": locs_col_id, } ], probability=1 / rp, ) event.set_time_range_from_forcings() event.to_yaml(output["event_yaml"]) events_list.append({"name": name, "path": output["event_yaml"]}) event_catalog = EventSet(events=events_list) event_catalog.to_yaml(self.output.event_set_yaml) if self.params.plot_fig: figs_dir = Path(root, "figs") figs_dir.mkdir(parents=True, exist_ok=True) for station in h_hydrograph[locs_col_id]: # plot hydrograph components fig, (ax, ax1) = plt.subplots(2, 1, figsize=(8, 10), sharex=True) surge_hydrographs_all.sel({locs_col_id: station}).plot.line( ax=ax, x="time", lw=0.3, color="k", alpha=0.5, add_legend=False ) surge_hydrographs.sel({locs_col_id: station}).plot.line( ax=ax, x="time", lw=2, color="k", add_legend=False ) tide_hydrographs.sel({locs_col_id: station}).plot.line( ax=ax1, x="time", lw=2, color="k", add_legend=False ) ax.set_ylabel("Normalized surge signal [-]") ax1.set_xlabel("Time") ax1.set_ylabel("MHW Tide [m+MSL]") ax.set_title("Coastal Waterlevel Hydrograph components") ax1.set_title("") ax.set_ylim(-0.2, 1.1) ax1.set_xlim( tide_hydrographs["time"].min(), tide_hydrographs["time"].max() ) fig.tight_layout() fig.savefig( figs_dir / f"hydrograph_components_{station.values}.png", dpi=150, bbox_inches="tight", ) # plot return periods try: da_wl_eva_station = da_wl_eva.sel({locs_col_id: station}).squeeze() ax = plot_return_values( da_wl_eva_station["peaks"].reset_coords(drop=True), da_wl_eva_station["parameters"].reset_coords(drop=True), da_wl_eva_station["distribution"].item(), extremes_rate=da_wl_eva_station["extremes_rate"].item(), nsample=100, ) ax.set_ylim( da_wl_eva_station["return_values"].values.min() * 0.75, ax.get_ylim()[1], ) plt.savefig( figs_dir / f"eva_{station.values}.png", dpi=150, bbox_inches="tight", ) except Exception as e: # this may fail if too few peaks are found .. logger.warning( f"Could not plot return values for station {station.values}: {e}" ) # plot design hydrograph plot_hydrographs( h_hydrograph.where( h_hydrograph[locs_col_id].isin(station.values), drop=True ).squeeze(), figs_dir / f"hydrographs_stationID_{station.values}.png", )